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SOME PROPERTIES OF SPACES SIMILAR TO
CECH - COMPLETE PROPERTY

DuSan Milovanéevié

Abstract. In this paper we study some notions related to the re-
mainder X* = X \ f(X) which are similar to the Cech-complete prop-
erty. A topological space X is P (wP) — complete if X is a Tychonoft
space and remainder X* = 8X \ 8(X) is a P (wP) - set in 8X. The
set A C X is an L — set if AN clx(F) = 0 for each Lindelof subset F
contained in X \ A. Recall that a space X is said to be L — complete if
X is a Tychonoff space and the remainder X* = X \ §(X) is an L -
set in BX.

1. Introduction

Let X be a topological space. Then:

K(X) denotes the family of all nonempty compact subsets of X.

Px denotes the set of all P-points of X.

W Px denotes the set of all weak P-points of X.

Lx denotes the set of all L-points of X.

The closure of a subset A of a space X is denoted by clx(A).

In this paper we assume that all spaces are Hausdorff. For notions and
definitions not given here see [3], [6], [8]

Definition 1.3. Let X be a topological space.

(a) A point p € X is said to be a P — point if the intersection of countably
many neighborhoods of p is a neighborhood of p ( [8]).

(b) A point p € X is a weakP — point if p ¢ clx(F) for each countable
subset I C X \ {p} (see [8]).

It is clear that every P-point is a weak P-point, it follows that Px C
W Px . Furthermore, it can be shown that a point p € X is a P-point if and
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only if every F,-set that is contained in X \ {p} has the closure contained in
X\ {p}.

Definition 1.4. Let X be a topological space.

(a) A set A C X is said to be a P-set if the intersection of countably many
neighborhoods of A is a neighborhood of A.

(b) A set A C X is a weak P-set{wP — set) if ANclx(F) = 0 for each
countable set F' contained in X \ A.

It is easy to see that every P-set is a weak P-set. Furthermore, the set
Py (W Px) is a P(wP)-set. The converse is not necessarily true (see Example
1.4).

Tt is easy to see that every open set of X is a P-set.

The reader can easily prove the following lemma.

Lemma 1.5. Let X be a topological space. The set A C X is a P-set if
and only if every Fy-set that is contained in X \ A has the closure contained
in X\ A. If X is a compact space, then the set A C X is a P-set if and
only if every o-compact set that is contained in X \ A has the compact closure
contained in X \ A.

Example 1.4. Let R be the set of real numbers with the Euclidean
topology.

It is known that R is second countable, separable, locally compact and
o-compact.

Every open interval (a, b) is a P-set, since for every F-set A C (—o0, a]U
[b, +00) the closure clg(A) C (—o0, a]U[b, +00). But Px = 0, since R is second
countable.

2. P(wP) complete spaces

Definition 2.1. A topological space X is P (wP) — complete if X 1is
a Tychonoff space and the remainder X* = X \ B(X) is a P (wP) - set in
BX.

Our definition of P(wP) - complete spaces is an external definition; it
characterizes P(wP) - complete spaces by their relations to other topological
spaces, viz., their compactifications. We shall now establish an internal char-
acterization of P(wP) - complete spaces. To begin, we introduce an auxiliary
concept. We shall say that the space X is hypercountably compact(strongly
countably compact) if every o-compact (countable) subset of X has a com-
pact closure.
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Lemma 2.2. A Tychonoff space X 1is hypercountably compact (strongly
countably compact) if and only if for every compactification c¢X of the space
X the remainder c¢X \ ¢(X) is a P(wP) - set in cX ( [8]).

Theorem 2.3. For every Tychonoff space X the following conditions
are equivalent:

(I) For every compactification c¢X of the space X the remainder c¢X \ ¢(X)
is a P(wP) -set in cX.
(II) The remainder BX \ B(X) is a P (wP) -set in X.
(III) There exists a compactification cX of the space X the remainder cX \

c(X) is a P(wP) -set in cX.

Proof. Implications (I} = (II) and (II) = (III) are obious, so that
it suffices to prove that (I11) = (I).

(III) = (I) : (III) = hypercountably compact (strongly countably
compact) property and by Lemma 2.2, hypercountably compact( strongly
countably compact) property < (I).1

Remark. According to Lemma2.2, it is easy to see that the following
hold:

(a P(wP) - completeness is hereditary with respect to closed subspaces.
(b) The sum ®{Xs : s € S} is P (wP) - complete if and only if all spaces

Xs are P (wP) - complete and the set S is finite.

(¢) If there exists a continuous [perfect] mapping f: X — Y of a wP [P]

- complete space X onto a Tychonoff space Y, then Y is a wP [P] -

complete space.

(d) Let X be the product of spaces X,, a € A.

(1) If every X,, a € A, is a P -complete space , then X is a P - complete
_ space.

(2) The space X is wP -complete if and only if all spaces X, are wP -

complete (see [7], [8]).

Definition 2.4. A Tychonoff space X is hemicompact if in the family
of all compact subsets of X ordered by C there exists a countable cofinal
subfamily { [3], 3.4.E).

Theorem 2.5. For every Tychonoff space X the following conditions
are equivalent:

(I) The space X is hemicompact.
(II) For every compactification cX of the space X x(cX \ c(X),cX) < Ng.
(III) There exists a compactification cX of the space X such that x( cX \
c(X),cX) < Ng.



78 Dugan Milovantevié

Proof. Implications (I) = (II) and (II) = (I1I) are obvious, so that
it suffices to prove that (11I) = (I).

(I1I) = (I) : It is easy to see that {cX\ K : K € K(X)} is the family of
all open neighbourhods of the subset c¢X \ ¢(X). Since x(cX \ ¢(X), cX) < Ry,
there exists a countable subfamily {¢X\K,, : K, € K(X)An € N} C {cX\K :
K € K(X)} such that for each K € K(X) there exists a ¢cX \ K,,n € N
such that ¢cX \ K, C cX \ K & K C K,. Hence the subfamily {K,, : K, €
K(X)An € N} is cofinal in the family K(X).l

Definition 2.6. A topological space X is Rg — complete if X is a Ty-
chonoff space and x(BX \ B(X),BX) < V.

The following three propositions are straitforward.

Proposition 2.7. Ny - completeness is hereditary wit respect to closed
subsets and with respect to Gs - subsets.

Proposition 2.8. The sum &{X, : s € S} is Ng - complete if and only
if all spaces X are Ry - complete and card(S) < V.

Proposition 2.9. If X and Y are Tychonoff spaces and there exists a
perfect mapping f : X — Y of X onto Y, then X s Rg - complete if and
only if Y is Ng - complete.

Proposition 2.10. Let X be the product of spaces X;, i € {1,2... ,n}.
The space X is Ny - complete if and only if every X; are Ry - complete.

Proof. Case =: By Theorem 2.5, X is Ng - complete <& X is hemicom-
pact. Let K(X;) the family of all compact subsets of X;,5 € {1, 2... ,n}.
For a fixed z € x{X; i € {1, 2... ,n}\ {j}} the family A = {K x {z} :
K € K(X;)} ¢ K(X) ( K(X) denotes the family of all nonempty com-
pact subsets of X). Since X is hemicompact, there exists a countable cofinal
subfamily C(X) C K(X). For each X; :j € {1, 2...,n}, we have that
p;(C) C p;j(A) = K(Xj), where p; is the projection from X onto X,. Fur-
thermore, p;(C) C K(X;) is countable cofinal subfamily. Hence X is a R -
complete space.

Case «<: Let C(X;) C K(X;), i € {1,2,...,n} countable cofinal sub-
family. We shall prove that C(X) = {x{C(X;) : i € N}} < K(X) is count-
able cofinal subfamily. For each K € K(X), we hawe that p;(K) € K(X;) and
pi(K) C K; € C(X;),i € {1, 2... ,n} (The spaces X; is hemicompact), where
p; is the projection from X onto X;. Furthermore, K C K1 X Ko X ... x K, €
C(X) C K(X).m
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3. L - complete spaces

Definition 3.1. Let X be a topological space.

(a) A point p € X is an L — point if p ¢ clx(F) for each Lindeldf subset
FcX\{p}

(b) A set AC X isan L — set if ANclx(F) =0 for each Lindelsf subset
F contained in X \ A.

It is clear that every L-point is a weak P-point, hence Lx C W Py.
Furthermore, the set Lx is a L-set. The following example shows that no
every weak P - point is an L - point.

Example 3.2. Let [0,w1] ([0,wp]) be the space of ordinals less than
or equal to the first uncountable ordinal (first countable ordinal) with the
order topology and [0,w;] x [0, wp] the Cartesian product. The subspace X; =
[0,w1] X [0,wp] \ {(w1,n) : n € [0,wy)} of [0,w1] x [0,wp] is noncompact and
normal in the subspace topology. Let Xo = X7 U {p}, (p ¢ X1) be the one-
point compactification of X;. Then the space Xz is compact and T} space. It is
not Hausdorff since the point p and (w1, wp) have no disjoint neighbourhoods.
The point (w1,wq) is a weak P - point but it is not a P - point.

Let A = {a, € Xy : n € N} be any countable subset of X, \ {(w1,wq)}
and let p € A. Then A = {(Zn,yn) : n € [0,w1), ¥ € [0,wp);n € N} where
{zn, € 0,w1) :n € N} C [0,w1) and {yn € [O,wp) : » € N} C [0,wq). Let
a be an upper bound for the z,; a < wi, since wy has uncountably many
predecessors, while ¢ has only countably many. Thus the set ([0, a] x [0, wp)) U
{p} is closed and compact in Xy. Furthermore, A C ([0, a] x [0,wp]) U {p} and
(wr,w0) ¢ ([0,a] x [0,wo]) U {p}. Then (w1, wo) ¢ ([0,] x [0,wo]) U {p}.

The point (w;,wp) is not an L - point because there exists a o - compact
(Lindelof) subset F' = U{([0,w1) x {k}) U {p} : k € [0,wp)} C X3 such that
clx, (F) = Xa.

We need now the following simple lemma taken from 1.3.

Lemma 3.3. Let X be a compact space. The set (point) A C X(a €
X) is a L-set(point) if and only if every Lindeldf set that is contained in
X\ A (X \{a}) has the compact closure contained in X \ A (X \ {a}).

Remark. It is clear that every L - point is a P - point, hence Ly C Px.
The following example shows that not every P - point is an L - point.

Example 3.4. Let [0,w;] ([0,wp]) be the space of ordinals less than
or equal to the first uncountable ordinal (first countable ordinal) with the
order topology and [0,w;] x [0,wp] Cartesian product. The subspace X; =
[0,w1] x [0,wo] \ {(w1,7) : n € [0,wp)} of [0,w1] X [0,wp] is noncompact and
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normal in the subspace topology. Let Xy = X; U {p}, (p ¢ X1) be the one-
point extension of X;. We can define an topology on Xg by declaring open
base of the point p any subset of X, whose complement is countable. Then
the space X, is Lindeléf and T} space. It is not Hausdorff (compact) since
the point p and (w1, wp) have no disjoint neighbourhoods (since the subsets
([0,w1) x {n}) U{p};n € [0,wp) are closed and noncompact subsets in X3).

The point (wy,wp) is a P - point but not an L - point. Let A = {A,, C
X5 :n € N} be any o - compact subset of Xg \ (w1, wp).

Case I: If {p} ¢ A then p;(A) and py(A) are o - compact subsets of
[0,w) and [0,wg], where p1,py are projections from. X3 \ {(wy,wp)} onto
[0,w1), [0,wp]. Since [0,w;)([0,wp]} is hypercountably compact (compact)
there exists a compact subsets [0, ] C [0,w;] and [0,wp] such that p;(A) C
[0,a] and po(A) C [0,wp]. The set [0,a] x [0,wp] is closed and compact in
X5\ {{w1,wo)}. Furthermore, A C [0, ] X [0,wp] and (w1,wp) ¢ clx,(A).

Case II: Let {p} € A. We will now show that (wj,wp) is a P - point.
According to Case I, the set A C ([0, ] x [0, wp])U{p}. Since ([0, a] x [0, wp]) U
{p} is closed and compact in X3 \ {(w1,wo)}, the point (w1,wp) is.a P - point
in Xg.

The point (w1,wp) is not an L - point because there exists a Lindeldf
subset F' = U{([0,w1) x {k})U{p} : k € [0,wo)} C X2 such that clx,(F) = X.

We need now the following simple lemma taken again from 1.3.

Definition 3.5. A topological space X will be called an LC — space if
each Lindelof subspace of X has compact closure.

Remark. The subspace X5\ {(w1,wp)} in Example 3.4 is a hypercount-
ably compact (HCC') space but it is not an LC - space.

The following is an immediate consequence of Lemma 3.3, and Defini-
tion 3.5.

Lemma 3.6. A Tychonoff space X is an LC — space if and only if for
every compactification ¢X of the space X the remainder ¢X \ ¢(X) is an L -
set in cX.

Theorem 3.7. For every Tychonoff space X the following conditions
are equivalent: . v
(I) For every compactification cX of the space X the remainder cX \ e(X)
is an L - set in cX.
(II) The remainder BX \ B(X) is an L - set in BX.

(III) There exists a compactification cX of the space X the remainder cX \
c(X) isan L - set in cX.
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Proof. Implications (I) = (II) and (IT) = (III) are obvious, sc that
it suffices to prove that {II1) = (I)..

(I1T) = (I)case : (III) = LC property and by Lemma 3.6, LC prop-
erty < (). A topological space X is L —complete if X is a Tychonoff space

and satisfies condition (I), and hence all the conditions, in Theorem 3.7.

Proposition 3.8. Fvery closed subépace of an L - complete space is L
- complete.

Proof. Since Lindelofness is hereditary with respect to closed subsets,
it immediately foliows from Lemma 3.6. B

Since compactness and Lindelofness is hereditary with respect to closed
subsets and finite unions, the rollowing proposition 1s a consequence of Lemma
3.6 and Proposition 3.8.

Proposition 3.9. The sum ®{Xs;:s€ S} is L - complete if and only
if all spaces Xy are L - complete and the set S is finite. '

Proposition 3.10. The Cartesian product of L - complete spaces is L
- compiete. .

Proof. Let X = x{X, : a € A} be the product of L - complete spaces
X, and let F' be any Lindel6f subset of X . Since the projections p, : X — X,
from X onto X, are continuous and open mappings, from each a € A, we have
that p,(F) is a Lindeldf subset of X,. The set clx, (pa(F)) is compact in X,.
Furthermore, FF C Y = x{clx,(ps(F)) : a € A} and Y is a compact(closed)
subspace of X. Then clx(F') = cly (F) is a compact subset of X. By Theorem
3.7 and Lemma 3.6, X is an L - complete space.B

Corollary 3.11. The limit of an inverse sequence of L - complete
spaces is L - complete.

Proposition 3.12. Let X be the product of spaces X;, 1 € {1,2... ,n}.
If X s L - complete space, then every X; are L - complete.

Proof. By Theorem 3.7, and Lemma 3.6, X is L - complete & X is
LC - space. Let F; be any Lindeléf subset of X;,7 € {1, 2... ,n}. For a
fixedz € x{X; :i€ {1, 2...,n}\{j}} theset A = Fx {2z} C X is a
Lindel6f subset of X. Since X is an LC - space, clx(A) € K(X). For each
X; 13 €A1, 2,...,n}, we have that p;(clx(A)) € K(X;), where p; is the
projection from X onto X;. Furthermore, F' C p;(clx(A)) and clx,(F) €
K(X;). According to Lemma 3.6, X; is a L - complete space.l

Since the class of compact (Lindeldf) spaces is perfect, from the defini-
tion of L - complete spaces we obtain.
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Proposition 3.13. If X and Y are Tychonoff spaces and there exists

a perfect mapping f : X — Y of X onto Y, then X is L - complete if and
“only if Y is L - complete.
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