# SOME PROPERTIES OF SPACES SIMILAR TO ČECH - COMPLETE PROPERTY

#### Dušan Milovančević

**Abstract.** In this paper we study some notions related to the remainder  $X^* = \beta X \setminus \beta(X)$  which are similar to the Čech-complete property. A topological space X is P(wP) – complete if X is a Tychonoff space and remainder  $X^* = \beta X \setminus \beta(X)$  is a P(wP) – set in  $\beta X$ . The set  $A \subset X$  is an L – set if  $A \cap cl_X(F) = \emptyset$  for each Lindelöf subset F contained in  $X \setminus A$ . Recall that a space X is said to be L – complete if X is a Tychonoff space and the remainder  $X^* = \beta X \setminus \beta(X)$  is an L-set in  $\beta X$ .

### 1. Introduction

Let X be a topological space. Then:

K(X) denotes the family of all nonempty compact subsets of X.

 $P_X$  denotes the set of all P-points of X.

 $WP_X$  denotes the set of all weak P-points of X.

 $L_X$  denotes the set of all L-points of X.

The closure of a subset A of a space X is denoted by  $cl_X(A)$ .

In this paper we assume that all spaces are Hausdorff. For notions and definitions not given here see [3], [6], [8]

## **Definition 1.3.** Let X be a topological space.

- (a) A point  $p \in X$  is said to be a P point if the intersection of countably many neighborhoods of p is a neighborhood of p ([8]).
- (b) A point  $p \in X$  is a weak P point if  $p \notin cl_X(F)$  for each countable subset  $F \subset X \setminus \{p\}$  (see [8]).

It is clear that every P-point is a weak P-point, it follows that  $P_X \subset WP_X$ . Furthermore, it can be shown that a point  $p \in X$  is a P-point if and

AMS (MOS) Subject Classification 1991. Primary: 54D30, 54D35, 54D40. Secondary: 54A10.

Key words and phrases: Extensions of spaces, remainders, completions.

only if every  $F_{\sigma}$ -set that is contained in  $X \setminus \{p\}$  has the closure contained in  $X \setminus \{p\}$ .

**Definition 1.4.** Let X be a topological space.

- (a) A set  $A \subset X$  is said to be a P-set if the intersection of countably many neighborhoods of A is a neighborhood of A.
- (b) A set  $A \subset X$  is a weak P-set(wP set) if  $A \cap cl_X(F) = \emptyset$  for each countable set F contained in  $X \setminus A$ .

It is easy to see that every P-set is a weak P-set. Furthermore, the set  $P_X$  ( $WP_X$ ) is a P(wP)-set. The converse is not necessarily true (see Example 1.4).

It is easy to see that every open set of X is a P-set.

The reader can easily prove the following lemma.

**Lemma 1.5.** Let X be a topological space. The set  $A \subset X$  is a P-set if and only if every  $F_{\sigma}$ -set that is contained in  $X \setminus A$  has the closure contained in  $X \setminus A$ . If X is a compact space, then the set  $A \subset X$  is a P-set if and only if every  $\sigma$ -compact set that is contained in  $X \setminus A$  has the compact closure contained in  $X \setminus A$ .

**Example 1.4.** Let R be the set of real numbers with the Euclidean topology.

It is known that R is second countable, separable, locally compact and  $\sigma\text{-compact}.$ 

Every open interval (a, b) is a P-set, since for every  $F_{\sigma}$ -set  $A \subset (-\infty, a] \cup [b, +\infty)$  the closure  $cl_R(A) \subset (-\infty, a] \cup [b, +\infty)$ . But  $P_X = \emptyset$ , since R is second countable.

## 2. P(wP) complete spaces

**Definition 2.1.** A topological space X is P(wP) – complete if X is a Tychonoff space and the remainder  $X^* = \beta X \setminus \beta(X)$  is a P(wP) – set in  $\beta X$ .

Our definition of P(wP) - complete spaces is an external definition; it characterizes P(wP) - complete spaces by their relations to other topological spaces, viz., their compactifications. We shall now establish an internal characterization of P(wP) - complete spaces. To begin, we introduce an auxiliary concept. We shall say that the space X is hypercountably compact(strongly countably compact) if every  $\sigma$ -compact (countable) subset of X has a compact closure.

**Lemma 2.2.** A Tychonoff space X is hypercountably compact (strongly countably compact) if and only if for every compactification cX of the space X the remainder  $cX \setminus c(X)$  is a P(wP) - set in cX ([8]).

**Theorem 2.3.** For every Tychonoff space X the following conditions are equivalent:

- (I) For every compactification cX of the space X the remainder  $cX \setminus c(X)$  is a P(wP) -set in cX.
- (II) The remainder  $\beta X \setminus \beta(X)$  is a P(wP)-set in  $\beta X$ .
- (III) There exists a compactification cX of the space X the remainder  $cX \setminus c(X)$  is a P(wP)-set in cX.

**Proof.** Implications  $(I) \Rightarrow (II)$  and  $(II) \Rightarrow (III)$  are obious, so that it suffices to prove that  $(III) \Rightarrow (I)$ .

 $(III) \Rightarrow (I) : (III) \Rightarrow$  hypercountably compact (strongly countably compact) property and by Lemma 2.2, hypercountably compact (strongly countably compact) property  $\Leftrightarrow (I)$ .

Remark. According to Lemma 2.2, it is easy to see that the following hold:

- (a P(wP) completeness is hereditary with respect to closed subspaces.
- (b) The sum  $\oplus \{X_s : s \in S\}$  is P(wP) complete if and only if all spaces  $X_s$  are P(wP) complete and the set S is finite.
- (c) If there exists a continuous [perfect] mapping  $f: X \longrightarrow Y$  of a wP [P] complete space X onto a Tychonoff space Y, then Y is a wP [P] complete space.
- (d) Let X be the product of spaces  $X_a$ ,  $a \in A$ .
- (1) If every  $X_a$ ,  $a \in A$ , is a P -complete space, then X is a P complete space.
- (2) The space X is wP -complete if and only if all spaces  $X_a$  are wP -complete (see [7], [8]).

**Definition 2.4.** A Tychonoff space X is hemicompact if in the family of all compact subsets of X ordered by  $\subset$  there exists a countable cofinal subfamily ([3], 3.4.E).

**Theorem 2.5.** For every Tychonoff space X the following conditions are equivalent:

- (I) The space X is hemicompact.
- (II) For every compactification cX of the space X  $\chi(cX \setminus c(X), cX) \leq \aleph_0$ .
- (III) There exists a compactification cX of the space X such that  $\chi(cX \setminus c(X), cX) \leq \aleph_0$ .

**Proof.** Implications  $(I) \Rightarrow (II)$  and  $(II) \Rightarrow (III)$  are obvious, so that it suffices to prove that  $(III) \Rightarrow (I)$ .

 $(III)\Rightarrow (I):$  It is easy to see that  $\{cX\setminus K: K\in K(X)\}$  is the family of all open neighbourhods of the subset  $cX\setminus c(X).$  Since  $\chi(cX\setminus c(X),cX)\leq\aleph_0$ , there exists a countable subfamily  $\{cX\setminus K_n: K_n\in K(X)\wedge n\in N\}\subset \{cX\setminus K: K\in K(X)\}$  such that for each  $K\in K(X)$  there exists a  $cX\setminus K_n, n\in N$  such that  $cX\setminus K_n\subset cX\setminus K\Leftrightarrow K\subset K_n.$  Hence the subfamily  $\{K_n: K_n\in K(X)\wedge n\in N\}$  is cofinal in the family K(X).

**Definition 2.6.** A topological space X is  $\aleph_0$  – complete if X is a Tychonoff space and  $\chi(\beta X \setminus \beta(X), \beta X) \leq \aleph_0$ .

The following three propositions are straitforward.

**Proposition 2.7.**  $\aleph_0$  - completeness is hereditary wit respect to closed subsets and with respect to  $G_\delta$  - subsets.

**Proposition 2.8.** The sum  $\oplus \{X_s : s \in S\}$  is  $\aleph_0$  - complete if and only if all spaces  $X_s$  are  $\aleph_0$  - complete and  $card(S) \leq \aleph_0$ .

**Proposition 2.9.** If X and Y are Tychonoff spaces and there exists a perfect mapping  $f: X \longrightarrow Y$  of X onto Y, then X is  $\aleph_0$  - complete if and only if Y is  $\aleph_0$  - complete.

**Proposition 2.10.** Let X be the product of spaces  $X_i$ ,  $i \in \{1, 2, ..., n\}$ . The space X is  $\aleph_0$  - complete if and only if every  $X_i$  are  $\aleph_0$  - complete.

**Proof.** Case  $\Rightarrow$ : By Theorem 2.5, X is  $\aleph_0$  - complete  $\Leftrightarrow X$  is hemicompact. Let  $K(X_j)$  the family of all compact subsets of  $X_j, j \in \{1, 2, \ldots, n\}$ . For a fixed  $x \in \times \{X_i : i \in \{1, 2, \ldots, n\} \setminus \{j\}\}$  the family  $A = \{K \times \{x\} : K \in K(X_j)\} \subset K(X)$  (K(X) denotes the family of all nonempty compact subsets of X). Since X is hemicompact, there exists a countable cofinal subfamily  $C(X) \subset K(X)$ . For each  $X_j : j \in \{1, 2, \ldots, n\}$ , we have that  $p_j(C) \subset p_j(A) = K(X_j)$ , where  $p_j$  is the projection from X onto  $X_j$ . Furthermore,  $p_j(C) \subset K(X_j)$  is countable cofinal subfamily. Hence  $X_j$  is a  $\aleph_0$  -complete space.

Case  $\Leftarrow$ : Let  $C(X_i) \subset K(X_i)$ ,  $i \in \{1, 2, ..., n\}$  countable cofinal subfamily. We shall prove that  $C(X) = \{ \times \{ C(X_i) : i \in N \} \} \subset K(X)$  is countable cofinal subfamily. For each  $K \in K(X)$ , we have that  $p_i(K) \in K(X_i)$  and  $p_i(K) \subset K_i \in C(X_i)$ ,  $i \in \{1, 2, ..., n\}$  (The spaces  $X_i$  is hemicompact), where  $p_i$  is the projection from X onto  $X_i$ . Furthermore,  $K \subset K_1 \times K_2 \times ... \times K_n \in C(X) \subset K(X)$ .

## 3. L - complete spaces

**Definition 3.1.** Let X be a topological space.

- (a) A point  $p \in X$  is an L-point if  $p \notin cl_X(F)$  for each Lindelöf subset  $F \subset X \setminus \{p\}$ .
- (b) A set  $A \subset X$  is an L set if  $A \cap cl_X(F) = \emptyset$  for each Lindelöf subset F contained in  $X \setminus A$ .

It is clear that every L-point is a weak P-point, hence  $L_X \subset WP_X$ . Furthermore, the set  $L_X$  is a L-set. The following example shows that no every weak P- point is an L- point.

**Example 3.2.** Let  $[0,\omega_1]$  ( $[0,\omega_0]$ ) be the space of ordinals less than or equal to the first uncountable ordinal (first countable ordinal) with the order topology and  $[0,\omega_1] \times [0,\omega_0]$  the Cartesian product. The subspace  $X_1 = [0,\omega_1] \times [0,\omega_0] \setminus \{(\omega_1,n): n \in [0,\omega_0)\}$  of  $[0,\omega_1] \times [0,\omega_0]$  is noncompact and normal in the subspace topology. Let  $X_2 = X_1 \cup \{p\}, \ (p \notin X_1)$  be the one-point compactification of  $X_1$ . Then the space  $X_2$  is compact and  $T_1$  space. It is not Hausdorff since the point p and  $(\omega_1,\omega_0)$  have no disjoint neighbourhoods. The point  $(\omega_1,\omega_0)$  is a weak P - point but it is not a P - point.

Let  $A = \{a_n \in X_2 : n \in N\}$  be any countable subset of  $X_2 \setminus \{(\omega_1, \omega_0)\}$  and let  $p \in A$ . Then  $A = \{(x_n, y_n) : x_n \in [0, \omega_1), y \in [0, \omega_0); n \in N\}$  where  $\{x_n \in [0, \omega_1) : n \in N\} \subset [0, \omega_1)$  and  $\{y_n \in [0, \omega_0) : n \in N\} \subset [0, \omega_0)$ . Let a be an upper bound for the  $x_n$ ;  $a < \omega_1$ , since  $\omega_1$  has uncountably many predecessors, while a has only countably many. Thus the set  $([0, a] \times [0, \omega_0]) \cup \{p\}$  is closed and compact in  $X_2$ . Furthermore,  $A \subseteq ([0, a] \times [0, \omega_0]) \cup \{p\}$  and  $(\omega_1, \omega_0) \notin ([0, a] \times [0, \omega_0]) \cup \{p\}$ . Then  $(\omega_1, \omega_0) \notin ([0, a] \times [0, \omega_0]) \cup \{p\}$ .

The point  $(\omega_1, \omega_0)$  is not an L - point because there exists a  $\sigma$  - compact (Lindelöf) subset  $F = \bigcup \{([0, \omega_1) \times \{k\}) \cup \{p\} : k \in [0, \omega_0)\} \subset X_2$  such that  $cl_{X_2}(F) = X_2$ .

We need now the following simple lemma taken from 1.3.

**Lemma 3.3.** Let X be a compact space. The set (point)  $A \subset X(a \in X)$  is a L-set(point) if and only if every Lindelöf set that is contained in  $X \setminus A(X \setminus \{a\})$  has the compact closure contained in  $X \setminus A(X \setminus \{a\})$ .

**Remark.** It is clear that every L - point is a P - point, hence  $L_X \subset P_X$ . The following example shows that not every P - point is an L - point.

**Example 3.4.** Let  $[0, \omega_1]$  ( $[0, \omega_0]$ ) be the space of ordinals less than or equal to the first uncountable ordinal (first countable ordinal) with the order topology and  $[0, \omega_1] \times [0, \omega_0]$  Cartesian product. The subspace  $X_1 = [0, \omega_1] \times [0, \omega_0] \setminus \{(\omega_1, n) : n \in [0, \omega_0)\}$  of  $[0, \omega_1] \times [0, \omega_0]$  is noncompact and

normal in the subspace topology. Let  $X_2 = X_1 \cup \{p\}$ ,  $(p \notin X_1)$  be the onepoint extension of  $X_1$ . We can define an topology on  $X_2$  by declaring open base of the point p any subset of  $X_2$  whose complement is countable. Then the space  $X_2$  is Lindelöf and  $T_1$  space. It is not Hausdorff (compact) since the point p and  $(\omega_1, \omega_0)$  have no disjoint neighbourhoods (since the subsets  $([0, \omega_1) \times \{n\}) \cup \{p\}; n \in [0, \omega_0)$  are closed and noncompact subsets in  $X_2$ ).

The point  $(\omega_1, \omega_0)$  is a P - point but not an L - point. Let  $A = \{A_n \subset X_2 : n \in N\}$  be any  $\sigma$  - compact subset of  $X_2 \setminus (\omega_1, \omega_0)$ . Let  $A = \{A_n \subset X_2 : n \in N\}$ 

Case I: If  $\{p\} \notin A$  then  $p_1(A)$  and  $p_0(A)$  are  $\sigma$  - compact subsets of  $[0,\omega_1)$  and  $[0,\omega_0]$ , where  $p_1,p_0$  are projections from  $X_2 \setminus \{(\omega_1,\omega_0)\}$  onto  $[0,\omega_1)$ ,  $[0,\omega_0]$ . Since  $[0,\omega_1)([0,\omega_0])$  is hypercountably compact (compact) there exists a compact subsets  $[0,\alpha] \subset [0,\omega_1]$  and  $[0,\omega_0]$  such that  $p_1(A) \subset [0,\alpha]$  and  $p_0(A) \subset [0,\omega_0]$ . The set  $[0,\alpha] \times [0,\omega_0]$  is closed and compact in  $X_2 \setminus \{(\omega_1,\omega_0)\}$ . Furthermore,  $A \subset [0,\alpha] \times [0,\omega_0]$  and  $(\omega_1,\omega_0) \notin cl_{X_2}(A)$ .

Case II: Let  $\{p\} \in A$ . We will now show that  $(\omega_1, \omega_0)$  is a P - point. According to Case I, the set  $A \subset ([0, \alpha] \times [0, \omega_0]) \cup \{p\}$ . Since  $([0, \alpha] \times [0, \omega_0]) \cup \{p\}$  is closed and compact in  $X_2 \setminus \{(\omega_1, \omega_0)\}$ , the point  $(\omega_1, \omega_0)$  is a P - point in  $X_2$ .

The point  $(\omega_1, \omega_0)$  is not an L - point because there exists a Lindelöf subset  $F = \bigcup \{([0, \omega_1) \times \{k\}) \cup \{p\} : k \in [0, \omega_0)\} \subset X_2$  such that  $cl_{X_2}(F) = X_2$ . We need now the following simple lemma taken again from 1.3.

**Definition 3.5.** A topological space X will be called an LC – space if each Lindelöf subspace of X has compact closure.

**Remark.** The subspace  $X_2 \setminus \{(\omega_1, \omega_0)\}$  in Example 3.4 is a hypercountably compact (HCC) space but it is not an LC - space.

The following is an immediate consequence of Lemma 3.3, and Definition 3.5.

**Lemma 3.6.** A Tychonoff space X is an LC – space if and only if for every compactification cX of the space X the remainder  $cX \setminus c(X)$  is an L -set in cX.

**Theorem 3.7.** For every Tychonoff space X the following conditions are equivalent:

- (I) For every compactification cX of the space X the remainder  $cX \setminus c(X)$  is an L set in cX.
- (II) The remainder  $\beta X \setminus \beta(X)$  is an L set in  $\beta X$ .
- (III) There exists a compactification cX of the space X the remainder  $cX \setminus c(X)$  is an L set in cX.

**Proof.** Implications  $(I) \Rightarrow (II)$  and  $(II) \Rightarrow (III)$  are obvious, so that it suffices to prove that  $(III) \Rightarrow (I)$ .

 $(III) \Rightarrow (I)case : (III) \Rightarrow LC$  property and by Lemma 3.6, LC property  $\Leftrightarrow (I).$  A topological space X is L-complete if X is a Tychonoff space and satisfies condition (I), and hence all the conditions, in Theorem 3.7.

Proposition 3.8. Every closed subspace of an L - complete space is L - complete.

**Proof.** Since Lindelöfness is hereditary with respect to closed subsets, it immediately follows from Lemma 3.6. ■

Since compactness and Lindelöfness is hereditary with respect to closed subsets and finite unions, the following proposition is a consequence of Lemma 3.6 and Proposition 3.8.

**Proposition 3.9.** The sum  $\oplus \{X_s : s \in S\}$  is L - complete if and only if all spaces  $X_s$  are L - complete and the set S is finite.

**Proposition 3.10.** The Cartesian product of L - complete spaces is L - complete.

**Proof.** Let  $X = \times \{X_a : a \in A\}$  be the product of L - complete spaces  $X_a$  and let F be any Lindelöf subset of X. Since the projections  $p_a : X \longrightarrow X_a$  from X onto  $X_a$  are continuous and open mappings, from each  $a \in A$ , we have that  $p_a(F)$  is a Lindelöf subset of  $X_a$ . The set  $cl_{X_a}(p_a(F))$  is compact in  $X_a$ . Furthermore,  $F \subset Y = \times \{cl_{X_a}(p_a(F)) : a \in A\}$  and Y is a compact (closed) subspace of X. Then  $cl_X(F) = cl_Y(F)$  is a compact subset of X. By Theorem 3.7 and Lemma 3.6, X is an L- complete space.

Corollary 3.11. The limit of an inverse sequence of L - complete spaces is L - complete.

**Proposition 3.12.** Let X be the product of spaces  $X_i$ ,  $i \in \{1, 2, ..., n\}$ . If X is L - complete space, then every  $X_i$  are L - complete.

**Proof.** By Theorem 3.7, and Lemma 3.6, X is L - complete  $\Leftrightarrow X$  is LC - space. Let  $F_j$  be any Lindelöf subset of  $X_j, j \in \{1, 2, \ldots, n\}$ . For a fixed  $x \in \times \{X_i : i \in \{1, 2, \ldots, n\} \setminus \{j\}\}$  the set  $A = F \times \{x\} \subset X$  is a Lindelöf subset of X. Since X is an LC - space,  $cl_X(A) \in K(X)$ . For each  $X_j : j \in \{1, 2, \ldots, n\}$ , we have that  $p_j(cl_X(A)) \in K(X_j)$ , where  $p_j$  is the projection from X onto  $X_j$ . Furthermore,  $F \subset p_j(cl_X(A))$  and  $cl_{X_j}(F) \in K(X_j)$ . According to Lemma 3.6,  $X_j$  is a L - complete space.

Since the class of compact (Lindelöf) spaces is perfect, from the definition of L - complete spaces we obtain.

**Proposition 3.13.** If X and Y are Tychonoff spaces and there exists a perfect mapping  $f: X \longrightarrow Y$  of X onto Y, then X is L - complete if and only if Y is L - complete.

#### 4. References

- A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obshei topologii v zadachakh i uprazhneniyakh, Nauka, Moskva, 1974, (Problems and Exercises in General Topology.)
- [2] Bourbaki, Topologie générale, 4th ed., Actualites Sci Ind., No. 1142, Hermann, Paris, 1965
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24(1970), 760-766.
- [5] J. K. Kelley, General Topology, New York, 1957.
- [6] D. Milovančević, ΣC ultrafilters, P point and HCC property, FILOMAT (Niš) 11 (1997), 33 - 40.
- [7] D. Milovančević, A property between compact and strongly countably compact, Publ. Inst. Math. 38(1985), 193–201.
- [8] D. Milovančević, *P- tochki, slabye P-tochki i nekotorye obobshcheniya bikom-paktnosti*, Matematički Vesnik, 39, 1987, 431–440.(P-points, weak P-points and some generalizations of compactness.)
- [9] R.C. Walker, The Stone-Čech Compactification, Springer-Verlag, New York 1974.

Department of Mathematics Faculty of Mechanical Engineering University of Niš Yugoslavia

> Received November 16, 998. Received June 25, 1999.